skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heusser, Andrew C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Data visualizations can reveal trends and patterns that are not otherwise obvious from the raw data or summary statistics. While visualizing low-dimensional data is relatively straightforward (for example, plotting the change in a variable over time as (x,y) coordinates on a graph), it is not always obvious how to visualize high-dimensional datasets in a similarly intuitive way. Here we present HypeTools, a Python toolbox for visualizing and manipulating large, high-dimensional datasets. Our primary approach is to use dimensionality reduction techniques (Pearson, 1901; Tipping & Bishop, 1999) to embed high-dimensional datasets in a lower-dimensional space, and plot the data using a simple (yet powerful) API with many options for data manipulation [e.g. hyperalignment (Haxby et al., 2011), clustering, normalizing, etc.] and plot styling. The toolbox is designed around the notion of data trajectories and point clouds. Just as the position of an object moving through space can be visualized as a 3D trajectory, HyperTools uses dimensionality reduction algorithms to create similar 2D and 3D trajectories for time series of high-dimensional observations. The trajectories may be plotted as interactive static plots or visualized as animations. These same dimensionality reduction and alignment algorithms can also reveal structure in static datasets (e.g. collections of observations or attributes). We present several examples showcasing how using our toolbox to explore data through trajectories and low-dimensional embeddings can reveal deep insights into datasets across a wide variety of domains. 
    more » « less